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Abstract A new parallel subspace correction algorithm is proposed to solve
advection—diffusion equation with mass-conservative characteristic finite element
(MCC-FE) procedure. The dependence relations of the subdomains overlapping size,
spacial mesh parameter, time step, iteration number with the convergence rate is ana-
lyzed, and the a priori error estimate of this parallel algorithm is given. Some numerical
experiments are given to verify our theoretical result.
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1 Introduction

Recently, parallel computation has been a powerful tool for solving a large scale
partial differential equation systems. Overlapping domain decomposition method is
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a class of important numerical methods widely used in many fields. On the basis
of overlapping domain decomposition, lots of numerical methods for elliptic prob-
lems have been developed. The earliest overlapping domain decomposition method is
Schwarz alternating method. The traditional Schwarz alternating algorithms are not
parallel but successive. In order to obtain parallel Schwarz alternating algorithms,
many new techniques have been introduced, such as additive Schwarz methods, paral-
lel multilevel precondition algorithms, parallel weighted Schwarz algorithms, parallel
subspace correction methods and etc., see [1-8]. Overlapping domain decomposition
methods are extended to the parabolic problems. Generally speaking, through using
finite difference techniques in time, the parabolic problems can be changed into a set
of elliptic problems at each time step. One can use any parallel overlapping domain
decomposition algorithms, which are effective for elliptic problems, to solve these
resulting elliptic problems step by step over time. Cai in [9, 10] presented some addi-
tive Schwarz methods for parabolic problems but not gave the convergence analysis.
Taiin [11] proposed parallel weighted Schwarz algorithms for solving parabolic equa-
tions and analyzed iterative number needed at each time step to reach given accuracy.
Rui and Yang in [12,13] constructed and analyzed the traditional Schwarz algorithms
of parabolic problems and gave a convergent rate that depends on mesh size. H. Wang,
J. Liuetc. in [ 14] developed a characteristic quasi-two-level, coarse-mesh-free domain
decomposition method for unsteady convection-diffusion equations. Sun, Yang [15]
and Yang [16] proposed improved domain decomposition parallel methods for par-
abolic equations and derived an almost optimal error estimates, without the factor

H™> given in Dawson-Dupont’s error estimate in [17].

In this article, basing on subspace correction idea proposed by J. Xu [6], we propose
anew overlapping domain decomposition parallel algorithm combined with the MCC-
FE procedure to solve advection—diffusion equation. In this algorithm, by the similar
techniques as in [18-20], we utilize the partition functions of unity to distribute the
corrections in the overlapping domains reasonably. We study the dependence relations
of the subdomains overlapping size, spatial mesh parameter, time step and iteration
number with the convergence rate, and give the a priori error estimate. Theoretical
analysis suggests that we only need one or two iterations to reach given accuracy at
each time level.

The outline of this paper is as follows. Firstly, we revisit the MCC-FE procedure
for the advection—diffusion equation and propose a new parallel algorithm in Sect. 2.
Then, we give some important lemmas in Sect. 3, which will be used to complete the
proof of the convergence theorem. In Sect. 4, we give the convergence analysis and
prove convergence theorem. In Sect. 5, we present some numerical examples to verify
theoretical results.

2 Formulation of parallel algorithm

To illustrate our method, we just consider the following advection—diffusion problem
as our model: Let 2 = [a, b], t > 0,
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A new parallel subspace correction method 301

(a) 8— + i (vu — 88_14) = f(x,1),

at  ox ax
(b) (vu - ga_u) lx=a = (vu - 8—) lx=p =0
ax
(¢) u(x,0)=up, (D

where v = v(x, t) is a given velocity, ¢ > 0 is a diffusion coefficient, f and u%(x) are
given functions.

Hypothesis I [21] The velocity v satisfies
v e 0, T); Wh®(a, b)), v(a,t) =v(b,1) =0.

For given (x,t) € [a, b] x [0, T], define the characteristic line through (x, ¢) be
the function X (x, ¢; t) satisfying the following initial value problem

ax_ (X (x,157),7)
dr_v X, 1;7), 1), @
X(x,t;t) =x.

Set ¢ = [1 4+ 1v?] %, then the equation (1a) can be rewitten in an equivalent form

du av d , du

w__

0x 8x( ax) f- )

Let time increment Ar > 0 and " = nAt. According to (2), giving an initial
condition X (x, t";t") = x, we can get an approximate value of X by the Euler
method

X" =X (x, " ") = x — " (x)Ar. 4)

Proposition I [21] Under Hypothesis I and

- ”U ||C0(W1,oo) ’

it holds

i([a, b)) = [a, b].

To construct a new parallel algorithm, we firstly give a domain decomposition. Denote
(2] }N | a non-overlapping domain decomposition of £2. In order to obtain an over-
lappmg domain decomposition, we extend each subregion £2; to a larger region £2;
such that 2/ C §2; C £2 and dist(02/\3§2,952;\082) > H foreach 1 <i < N,
Where H > 0is called as overlapplng degree. Let 7j, be a family of quasi-regular

e eleme ain £2_such that the elements on the partition have
Th.i = Tn () §2; just is one finite element
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partition of £2; for 1 <i < N.LetV),, C HO1 (£2) be a piecewise k-degree polynomial
space defined on the partition 7j,.
Define the following bilinear form:

A(u, v) = (u, v) + At(euy, vy).

Based on (3) and (4), the MCC-FE scheme can be read from [21,22] as follows: for
Yo, € Vy, n>1,

@ A(pfvn) = (pp =" o XT¥" o) + Ar(f", va),
(b) (o), vi) = (o, vp), 5)

where the definitions of ,oZ_l o X and y" are as follows:

(o~ o X1) () = o~ (X} (),
m—1-— Atavn
ve= ax

In the following part of this section, we propose a new domain decomposition
parallel algorithm of the system (1). Define finite element sub-spaces as follows:

VZ:{vaVh; vy =0 in 2\£2;}, 1<i<N.
It is clear that

Vi =V} + Vi 4+ + V).
Obviously, there exists a finite open covering family {O'} ZN= | of the domain §2 such
that O’ N 2 C £2;. Using the theory of partition of unity, we know that there exists a
function sequence {goi}lN: | such that

(@) supp(pi) C 0", 0<g¢; <1, |gilwre<KH™", 1<i<N,

® g1+ +--+oy=1in £,

where r is some nonnegative integer. Let go;'l be the piecewise linear interpolation of ¢;
on 7y, and 7, be the interpolation operator on V. So, we propose a parallel subspace
correction algorithm.

Parallel Algorithm Denote m the iteration number at each time level. For given initial

approximation u2 = ,02 € Vp, seek uz eVy(n=1, 2, ---), by four steps:

Step 1. Set ity = u;’l_l and j = 1.
Step2.Fori =1,2,..., N, seek e;. € V;;, in parallel, such that

A(ei-, vp) = (uz_l o X’fy",Ih(¢£lvh)) + At(f”,Ih(goflvh))
] vh)), Yo, € V}il. (6)
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Step 3. Set
N .
W =i+ > e @)
i=1

Step 4.If j < m, thenset j := j + 1 and back to the step 2; or set u}, = i, and then
return the first step to start iteration at the next time level.

For Parallel Algorithm, we have the following main result:

Theorem 1 Let u and uj, be the solutions of (1) and Parallel algorithm, respectively.
Then the a priori error estimate

n n h* At ? k+1
m’?x |u —uhlle(_Q) <K m-Fm +h + At ¢, 8)

holds, where K is a positive constants independent of the mesh parameters H, h and
At.

3 Some important lemmas

Define the norm || - || 4 as follows:
||w||% = (w, w) + At(swx, wx).
We introduce a projection operator P,’; V= V,’; such that
A(P,iv,vh) =A(v,vn), Ve Vi, i=1,2...,N.

In order to analyze the convergence of Parallel algorithm, now we give some impor-
tant lemmas.

Lemma 1 [21] Let u and pj, be the solutions of (1) and (5). Then, the a priori estimate

lu — prllpoo2iey + €llu = prll 212y < K{hk+1 + At} )

holds.

Lemma 2 Fors =0, 1, there holds

. h .
I1(Z = Zn)(@pvn)llas (@) < Kﬁ””h”HS(.Q), YopelVy, 1<i<N, (0
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Proof It is easily seen that

I = ) (@ om) s ) < KIRPEH S (gl onl G
(£2) HM (k)
keTy

< KPP0 %7 1D Druil s,
ke,

< KD 041151 00 ) 1R 1 1 )
h? )
< K lonlss - (11)

where we have used the approximate properties of finite element space V;, and the fact
D1y, = 0 on each element. So we get the inequality of (10). O

Lemma 3 The following estimate

N
o h VA
|A(w. v) = D" A(w, Ti(g} Piv))| < K (ﬁ + Tt) lwllallvla — (12)
i=1

holds for all w, v € Vj,.

Proof 1t is easily seen that
A(w,Ih(<p2P}’;v)) = A(w, <p2P;iv) — A(w, A —Ih)(¢;,P;iU)),

and

o A, I}, dgj, Py
A (w, ¢,’1P;’lv) =A (go}lw, P,’lv) + At |:(swx, %Pﬁv) - (E%w, ﬁ)] .

Note that

N
A(w,v) = ZA((p};w, V).

i=1
Hence, we have
N . .
A(w, v) — Z A(w, Zn (¢}, Pyv))
i=1

N N
= > Alghw. (T — Phv) + > A(w. (T — In)(g} Piv))
i=1

N . . .
dol . PPy

¢ (2, ZERV) | (13)
Jx 0x
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Using Lemma 2, we obtain

(w, (Z — Zp) (¢}, Piv))

AT — Ip) (¢! P!
+At(ewm T - Ti) (@, hv))‘

|A(w, (T — Tp) (¢} Piv))| =

dax
h At
<K (ﬁ + T) lwlig oillvlls,qi-

So, we have

N

> 4 (v @ =T )| = K (5 + L) lwlallvlla,

i=1
and

N N

S a (¢Zw, (T - P;;)v)

i=1

S a ((I — Tl w, (T — P;;)v)

i=1

N 12
h At iNg 12
<K (E + T) (; (T - P,’l)vllA’_q,-) lwlla.
ALY

gl . gl dPlv
ewx,ﬂP;lv —( ¢ whw, .
= 0x 0x 0x

JEE (L 12
J i 2
e (2 ||P,;v||A’Q,») lwlla

i=1

In addition, we have

N

Substituting these inequalities into (13), we get the estimate (12). O

4 Convergence analysis

In this section, we give the complete proof of the convergence theorem.
We know that Parallel algorithm is equivalent to an iteration with initial value uz_l
to solve the following problem: Find ﬁz € V), such that for any v, € V),

Y ovn) 4+ Ar(f", op). (14)
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We can rewrite (14) as follows:
Al vp) = @ o XUy™ op) + Ar(F", ) + Al — o). (15)
Subtracting (5) from (15), we get the equation
Al — ol o) = (@)} = oY o XIy™, up) + Al — 4, vp). (16)

It is obvious that we must estimate the bound of uj, — p; to bound u} — u". The last
equation suggests that the bound of uj; — it} is crucial, which reflects the contribution
of the iteration error to the global approximation error.

Lemma 4 There exists the a priori estimate

h? At

5
2 + m) ||MZ_1 —iplla. 17)

I~ = &
Proof From Parallel algorithm and (14), we know that

A(e§~, vp) = A(e;, Plup) =A@} — ﬁ’J?_l,Ih(wij;;vh)), (18)

and

N

A — i, vp) = AG_y — 0, vp) + D A€l vp)
i=1
N

= AG"_, — i}, vn) + D AGy — @y, Th(g) Piop)). (19)
i=1

By Lemma 3, we have the estimate

@ — ila < K (% + g) @y — il 20)

Hence, we have the inequality (17). O

e o mrest o e PE e e bounds 0
Lemma 5 The a priori estimate

Ny — w15 < KA{1+ 18" 13 0)) 21
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Proof Using (14) and the definition of y”, we get the equation
Ay =y~ o) = gy~ o Xy vn) — Ay vn) + AL vp)
dul ! oy
-1 —1 h h
= (uj o X{y" — uj, ,vh)—At(e i
+At(f", vn)

_ _ _ av"
= (u} o X —ull l,vh)—m(uz Lo X1 il

dul ! 9
_At(e “h ﬂ)+At(f",vh)

ax  ox
n

d
= (uz_l o X'll — u;:_l, vh) — At (un—l o X?%, vh)
av" av"
—1 -1
—At (;" o X1 " ,vh)—At (ij" o X1 " ,vh)
9 n—1 P 9 n—1 9
0x ax 0x 0x

g™l Hy Y
_At(s . ,a—;)+m(f ,v,,). (22)

Choosing v, =} — u"in (22) and using Lemma 1, we obtain
g h h g

lag —up 1% < Nl o X1 — w1l — uf g
+K(ADH1+ 18" 7o)} + Kore{1 + 18151 o))
+8llay —ul A (23)
where we have used Lemma 1 and the inequality (Lemma 1 in [23]) [l¢ o X{|| <
(1+ KAD ol
Using the similar idea to Lemma 1 in [24] and Lemma 1, we have
Iy~ o X7 —uf g-1i0) < Kllug ™ 200 At
< K{E"  Mi2ey 18" M2y + 1" 2oy At
< K{1+ 1"l 20} At

Substitute the above estimate into (23), then we get the inequality (21). O

Next, we complete the proof of Theorem 1.

Proof Choosing v, = £" in (16), we have

1(e€y, 67) = A(n", €"). 24)

@ Springer
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We note that

(6" —&" "o X{y" £") + D (et} £7)

1
> S[@" & — @ o Xty € o Xiy] + i (ed], £)

\%

v

1
5[(&", £ — "L "L+ KAD] + At (egl, £1), 25)

where we have used the same technique as in [24] and the definition of y" again.
By use of Lemma 4 and Lemma 5, we easily get

A(".€") < " 1alIE" 14
h2 At 2 _ 1/2
=K (ﬁ + m) VAT 18 )] 18 1

h? \" B
) [+ 16" )]+ 81E 15 (26)

f“’(m+ﬁ

Substituting (25) and (26) into (24), we obtain
1 1 gn—1 ¢ 2
5[(1 —28)(&", €M) — "L EH] + 5(1 = 20)A1l1E" 51 )
RN A
< KAz[ng”—ln’iz(m + (? + ?) (1 + ||§”‘1||§,1(9)) ] 27)

Multiply (27) by 2 and sum it over time, then, for sufficiently small Ar and § we have

n 1/2 m n—1
1E" 17200 HA Do NE NG 000 ) <K L + o0 D N
L2(2) — HY(2) = H2 ' g2 — L@ (-
1= 1=

(28)
Using the discrete Gronwall’s lemma, we get
s SN

By Lemma 1, we get the inequality (8). So we complete the proof of Theorem 1. O

5 Numerical results

In this section, we present results of some numerical experiments with the main objec-
ive i eoreti is. Set [a, b] = [0, 2], denote by H the
e interval [a, b] into the following three
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| = i i —
—— o

Fig. 1 The sub-domains of the interval [a, b]

Table 1 Forthecase:v:%,H:é, h=At
h m e=1 e=1le—1 e=1le—3 e=1le—>5 e=0
L2 L2 L2 L2 L2

*

2.2821e — 2 2.8124e —2 3.4516e —2 3.4913e — 2 3.4917e -2
4.2306e — 2 3.0104e — 2 3.1740e — 2 3.2727e -2 3.2758¢ —2
3.7503¢ -2 2.8372¢ -2 3.1735¢ -2 3.2728e -2 3.2759¢ -2
3.5857¢ -2 2.8206e — 2 3.1735¢ -2 3.2728e — 2 3.2759¢ -2
3.4863¢ — 2 2.8190e — 2 3.1735¢ -2 3.2728e — 2 3.2759¢ -2
1.2479¢ —2 1.4363e —2 1.5231e — 2 1.5424e — 2 1.5427e — 2
1 1.9319¢ — 2 1.4910e — 2 1.4682¢ —2 1.4682¢ —2 1.4682¢ —2
1.7447e — 2 1.4404e — 2 1.4676e — 2 1.4681e —2 1.4681e —2
1.6942¢ — 2 1.4387e — 2 1.4676e — 2 1.4681e — 2 1.4681e —2
1.6753e —2 1.4386e — 2 1.4676e — 2 1.4681e —2 1.4681e —2
6.6170e — 3 7.2218e -3 7.3159¢ — 3 7.3169¢ — 3 7.3169¢ — 3
1 8.0829¢ — 3 7.3664¢ — 3 7.3054e — 3 7.3055¢ — 3 7.3055¢ — 3
7.3927e — 3 7.2298e — 3 7.3040e — 3 7.3054e — 3 7.3054e — 3
7.2718e — 3 7.2283e — 3 7.3040e — 3 7.3054e — 3 7.3054e — 3
7.2456e — 3 7.2283e -3 7.3040e — 3 7.3054e — 3 7.3054e — 3

EENE S I S * A WD =

8- Si- S- Si- 8- S £ S £ & B B - B R
*

A W

sub-domains: 21 = [0, 3+ 41, 2 =[5 - 4.3+ Lland 23 = [§ — &.2] (see
Fig. 1).

In this section, we choose the piecewise linear finite element spaces and apply the
same linear partition functions of unity as in [20].

Experiment I In this experiment, we consider that the velocity field is a constant.
The exact solution is u = e~ sin” 7x and the velocity is v = 0.1. Choosing different
values of the parameters ¢, i, At and the iterative number m, we present the following
errors of |[u — up||;2 in Tables 1 and 2. In these Tables, we use ““ * ” to denote the
numerical results by using MCC-FE method. Based on these numerical results, it is
easily seen that only one or two iterations are needed to reach the given accuracy
for the fixed overlapping degree H at each time step, which is coincided with our
theoretical analysis.

Experiment Il Here we consider a variable velocity field. Take the exact solution
u =e'sinrx and v = 1"—0. Choosing different values of the parameters ¢, h, At
and the iterative number m, we present the following errors of ||u — uy||;2 in Table 3.
These numerical results suggest that our theoretical analysis is valid.

; ical results by MCC-FE method and Parallel
e function f with complex structure and

ol ) Lil Zy I—i.lbl 2 prine
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Table 2 For the case: v = =, H = &, h = At

10° 2
h m e=1 e=le—1 e=1le—3 e=1le—>5 e=0
L? L? L? L? L?

21—4 * 2.2821le — 2 2.8124e — 2 3.4516e — 2 3.4913e —2 3.4917e¢ —2
% 1 3.5462¢ — 2 3.0263e — 2 3.0021e — 2 3.3080e — 2 3.3196e — 2
ﬁ 2 2.9672¢ — 2 2.7975¢ — 2 3.0020e — 2 3.3072¢ — 2 3.3188¢e —2
ﬁ 3 2.5252¢ — 2 2.7240e — 2 3.0020e — 2 3.3071e — 2 3.3187¢ — 2
ﬁ 4 2.2788e — 2 2.7035¢ — 2 3.0020e — 2 3.3071e — 2 3.3187¢ — 2
% * 1.2479¢ — 2 1.4363¢ — 2 1.5231e — 2 1.5424e — 2 1.5427¢ — 2
ﬁ 1 1.6714e — 2 1.5027¢ — 2 1.4641e — 2 1.4975¢ — 2 1.5042¢ — 2
z%g 2 1.4290e — 2 1.4242¢ — 2 1.4630e — 2 1.4975¢ — 2 1.5042¢ — 2
% 3 1.2695¢ — 2 1.4103¢ — 2 1.4630e — 2 1.4975¢ — 2 1.5042¢ — 2
% 4 1.1991e — 2 1.4079¢ — 2 1.4630e — 2 1.4975¢ — 2 1.5042¢ — 2
% * 6.6170e — 3 7.2218e — 3 7.3159¢ — 3 7.3169¢ — 3 7.3169¢ — 3
% 1 7.9674e — 3 7.4128¢ — 3 7.2947e¢ -3 7.2961e — 3 7.2962¢ — 3
% 2 7.3009¢ — 3 7.1720e — 3 7.2920e — 3 7.2958e¢ — 3 7.295% — 3
91—6 3 6.8992¢ — 3 7.1521e -3 7.2920e — 3 7.2958e — 3 7.295% — 3
% 4 6.9807¢ — 3 7.1504e — 3 7.2920e — 3 7.2958¢ — 3 7.2959% — 3

Table 3 For the case: v = {j, H:é, h=At

h m e=1 e=le—1 e=1le—3 e=1le—5 e=0
L? L? L2 L? L?

11—2 * 3.6687¢ — 2 6.1793¢ — 2 7.4209¢ — 2 7.5258e — 2 7.5270e — 2
ﬁ 1 7.2542¢ — 2 6.9213¢ — 2 6.9410e — 2 7.1682¢ — 2 7.1718e — 2
ﬁ 2 5.8469¢ — 2 6.2958¢ — 2 6.9400e — 2 7.1676e — 2 7.1713e¢ — 2
% 3 4.9055¢ — 2 6.1716e — 2 6.9399¢ — 2 7.1676e — 2 7.1712¢ — 2
% 4 4.4928e — 2 6.1469¢ — 2 6.9399¢ — 2 7.1676e — 2 71712¢ — 2
% * 2.3748e — 2 3.2185¢ —2 3.3497¢ — 2 3.3510e — 2 3.3510e — 2
ﬁ 1 3.7178e —2 3.4425¢ -2 3.3328¢ — 2 3.3324¢ -2 3.3324¢ -2
2~14 2 3.0658e — 2 3.2371e — 2 3.332¢ -2 3.3318¢ — 2 3.3319¢ — 2
ﬁ 3 2.7330e — 2 3.2180e — 2 3.3301le — 2 3.3318¢ — 2 3.3318¢ — 2
ﬁ 4 2.6120e — 2 3.2162¢ — 2 3.330le — 2 3.3318¢ — 2 3.3318¢ — 2
% * 1.3815¢ — 2 1.6319¢ — 2 1.6651e — 2 1.6654¢ — 2 1.6654¢ — 2
% 1 1.8363¢ — 2 1.6941e — 2 1.6608e — 2 1.6607e — 2 1.6606e — 2
% 2 1.5613e¢ — 2 1.6344e — 2 1.662e — 2 1.6606e — 2 1.6606e — 2
41*8 3 1.4665¢ — 2 1.6323¢ — 2 1.662¢ — 2 1.6606e — 2 1.6606e — 2

1.662¢ — 2 1.6606e — 2 1.6606e — 2




A new parallel subspace correction method 311

(@ (b)

T=0.5, H=1/6, m=1 T=1.0, H=1/6, m=1
60 T T T T T T T T T
501 * 5: 1

40t
3ot
20f]

10

-40

0O 02 04 06 08 1 12 14 16 18 2 Y0 02 04 06 08 1 12 14 16 18 2

(V] d)

T=1.5, H=1/6, m=1 T=2.0, H=1/6, m=1
200

150

100 |

50 1

100

-50 . 1 . . . . . . . R . . . . . . . . .
0O 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2

Fig. 2 Numerical results at different times under the case v = 1/10: T =0.5(a), T = 1.0(b), T = 1.5
(), T =2.0(d)

the homogeneous initial-boundary conditions as follows:
x2
f(x, 1) =100e' "7 cos(Smxt) sin(9mx),
u(a,t)y =u,t) =0,
u’(x) = 0.

Here, we fix the parameters H = 1/6, h = At = 1/48, v =0.land e = le — 5
and take iterative number m = 1, we observe numerical solutions at different time
(see Fig. 2 ) where we use “ - ” to denote numerical results of p, by MCC-FE method
and use “ * ” to denote numerical results of u;, by Parallel algorithm. These figures
clearly show that for the advection—dominated diffusion equation, u; approximates
i i iterating one cycle at each time step under the

@ Springer
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(a) (b)
T=1.0, H=1/6, m=1 T=0.5, H=1/6, m=1
150 T T T T T T T T T 80 T T T T T T T T T
60 -
100 -
40
50 - 20l
0 0
20 +
50 +
40}
-100 L L L L I L L L L -60 L L L L L L L L L
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
(0 (@)
T=1.5, H=1/6, m=1 T=2.0, H=1/6, m=1
250 T T T T T T T T T 250 r T T T T T T T T
200
150
100
50
0
-50
-100
.50 L L L L L L L L L -150 L L L L L L L L L
0O 02 04 06 08 1 12 14 16 18 2 0O 02 04 06 08 1 12 14 16 18 2

Fig.3 Numerical results at different times under the case v = ¢™*/10: T = 0.5(a), T = 1.0(b), T = 1.5
(¢), T =2.0(d)

Experiment IV In this experiment, we compare the numerical results by MCC-FE
method and Parallel algorithm under the variable velocity field. We still choose a right-
hand side function f with complex structure and the homogeneous initial-boundary
conditions as follows:

.X2
f(x,1) = 100"~ 7 ™ cos(3mwxt) sin(5mx),
u(a,t) =u(b,t) =0,
uO(x) =0.

For the variable velocity v = ¢7* /10, we fix the parameters H = 1/6, h = At =
48 ke iterati mber m = 1, we observe numerical solutions

s clearly show that for the variable velocity
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field, u;, also approximates well to p;, at different times, even only iterating one cycle
at each time step.
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